
1 INTRODUCTION

Given the continuous increase in energy costs, ener-
gy efficiency measures gain on importance. Specifi-
cally, building monitoring can be utilized to improve
buildings’ energy efficiency. However, most existing
buildings are not equipped with the required tech-
nologies. Thus, the required infrastructure must be
installed later, leading to high economical invest-
ments. This highlights the importance of a more effi-
cient approach to tackle the problem.

1.1 Approach

The proposed gateway software runs on the Raspber-
ry Pi 2014 and collects and processes measurements
of all nearby EnOcean 2014 sensors. It is connected
to a remote monitoring server through Internet based
technologies (local Ethernet network, mobile tele-
communication technologies – UMTS, etc.). The
prototype setup uses the Monitoring System Toolkit
on the server side (MOST 2014). However, any oth-
er BMS could be also used. The software is written
in JAVA and is therefore executable on every de-
vice, which can run a Java Virtual Machine. The
Linux based and credit-card-sized single-board com-
puter Raspberry Pi is low-cost, has enough resources
for our application, and is energy efficient (with a
power of about 2 Watts). As a sensor and fieldbus
technology, EnOcean is used because of the follow-
ing reasons:
 it offers a wide range of products.
 is wireless, which makes it easy to install in ex-

isting environments.
 most of the sensors use energy harvesting mech-

anisms, and do not need an external power
source, which again makes it easy to install them.

This also makes their maintenance intervals long-
er.

These attributes suggest that EnOcean can be con-
sidered as one of the possible technologies for our
application.

2 HARDWARE ARCHITECTURE

2.1 Raspberry Pi

The Raspberry Pi, as shown in Figure 1 (2), is a
credit-card-sized ARM computer, which can run the
Linux based OS “soft-float Debian wheezy”.

In the proposed setup the Raspberry Pi runs the
gateway software, which receives measurements

Plug and Play Building Monitoring: The potential of low cost
components

Reinhard Zach, Alexander Paul, Robert Zach, and Ardeshir Mahdavi
Department of Building Physics and Building Ecology, Vienna University of Technology, Austria

ABSTRACT: The integration of building monitoring into existing buildings can be an expensive process and
may require inefficient installation efforts, since such existing buildings were not designed for this purpose.
This paper presents a specific approach to address this challenge. Thereby, low cost hardware components are
deployed to collect and process monitored data from multiple building zones. Moreover, energy-harvesting
wireless sensor technology is applied.

Figure 1: Hardware Architecture

from the sensors and sends them to the building
monitoring software in the required format. The
software caches measurements, in case the connec-
tion to the monitoring server is interrupted.

2.2 EnOcean USB 300

The EnOcean USB 300, as shown in Figure 1 (3), is
a small USB stick that connects the Raspberry Pi to
the EnOcean Sensors. It receives the sensors’ radio
signals and forwards the data via USB port to the
gateway software.

2.3 EnOcean Sensors

The EnOcean Sensors, as shown in Figure 1 (4), use
a wireless radio protocol called EnOcean Radio Pro-
tocol (ERP) for data transmission to the USB 300.
They are characterized by the very low energy use.
For example, a battery free switch uses not more
than 50 µWs to send a message. This gives them the
ability to run on energy harvesting mechanisms (e.g.
solar panels) removing the need for a power cable.
This makes them very easy to install.

The drawback of the focus on the low energy use
is that the ERP is kept very minimalistic. Further-
more it varies between different sensor types and is
thus difficult to process. Typically such a packet is
only a few bytes in size (e.g. a typical telegram from
a temperature sensor in hexadecimal format: “a5 ff
02 99 08 00 05 72 7a 00”). The sending process it-
self takes usually about 40ms. In this timespan the
sender sends the packet three times with a random
interval. A packet itself is sent in 1ms. This strategy
is used by EnOcean to avoid collisions.

2.4 BMS Server

The BMS runs on an external server, as shown in
Figure 1 (1). We use the aforementioned Monitoring
System Toolkit (MOST).

3 SOFTWARE ARCHITECTURE

The software architecture is divided in two seperate
layers; the connector layer, as shown in Figure 2 (3),
and the gateway layer, as shown in Figure 2 (1).

The connector layer manages the connection to
the building monitoring software MOST, whereas
the gateway layer handles the processing of the re-
ceived sensor data. They communicate through an
interface, which is called Callback interface, as
shown in Figure 2 (2). The gateway layer is not
aware of the connector layer. Hence the connector
could be easily replaced through another building
monitoring solution, instead of MOST.

Furthermore the gateway layer constantly listens
to the COM-Port where the ERP data of the
EnOcean USB 300 is received.

3.1 Gateway Layer

This is the core application module of the gateway. It
processes the received byte stream of the COM-Port,
caches the measurement and forwards it through a
callback interface to the MOST connector.

The COM-Port provides the packet based on the
EnOcean Serial Protocol (ESP). The ERP with the
sensor data is encapsulated within the ESP packet.

The ESP contains a checksum, which is used to
verify if the data was correctly transmitted.

The EnOcean Equipment Profiles (EEP) are re-
quired for the correct processing of the ERP packets,
as they give information about the structure of the
received byte stream.

 After a packet is processed, the data is stored in a
lightweight Derby database. In this way, the meas-
urements are cached in case of connection loss.

3.1.1 COM-Port
The EnOcean USB 300 is accessible via a virtual
COM-Port. The RXTX Library is used, since it of-
fers a vast collection of methods for accessing serial
and parallel ports. It delivers a byte stream which
contains the received data of the EnOcean USB 300,
and hence the measurements of the sensors.

Since Linux offers by default a FTDI COM-Port
driver, no further installations are required. Only the
path to the USB device needs to be configured to
/dev/ttyUSB0.

3.1.2 Packet Receiving
The byte stream from the virtual COM-Port is read
by a listener thread waiting for new data to arrive.
The EnOcean USB 300 encapsulates the ERP-packet
into the ESP-packet in view of fault tolerance and
assignability.

Figure 2: Software Architecture

The ESP packet has a certain structure that has to be
taken into account:
 The first byte called Sync Byte signals the begin-

ning of a new ESP-packet with the value 0x55.
 It is followed by the header with a fixed length of

four bytes. Whereas the first two bytes define the
length of the data section, the third specifies the
length of the optional data and the fourth the type
of the packet. The gateway processes only type
RADIO telegrams.

 The next byte includes a checksum of the header
that is verified.

 With the seventh byte the data section begins
with the length specified in the header. Here the
ERP-Packet can be found, which includes the
measurements.

 The optional data section starts after the data sec-
tion. Its length is also defined in the header.

 Finally, a checksum byte for the two data fields
begins, with is used to verify the packet.

The gateway receives the ESP-packet from the COM
port, verifies it through the checksum, and then starts
the actual processing of the data section and hence
the ERP-packet.

3.1.3 Packet Processing
The processing of the ERP-packets turned out to be
rather complicated due to the structure and its lack of
uniformity. Each sensor type has its own packet
format, which differs strongly in both length and in-
terpretation of the data. This packet format is called
EnOcean Equipment Profile (EEP). In the current
Version 2.6 there are more than a hundred different
EEPs defined, and the number is increasing, since
new sensors, with new requirements, are constantly
published.

Therefore this logic is transferred to the outside of
the application source code, since every new EEP
would require a modification of the source code, and
hence a recompilation of the software.

An XML file is used to define a profile for each
kind of EEP. The file only needs to be placed in the
folder XML in the application directory and will get
deserialized on startup of the gateway. For this pur-
pose the SimpleXML framework is used. With this
method flexibility is maximized while minimizing
the efforts for supporting new sensor types (EEP
types).

Since the ERP has no information at all which
sensor type it is, it is necessary to link the Sender ID
of the sensor with the EEP. This is done in the build-
ing monitoring software. The connector layer hands
the mapping to the gateway layer through the Call
Back Interface.

3.2 Data Persistence

To tackle the problem of potential connection loss to
the server, be it a server update or an unplugged
Ethernet cable, a local database is used to retain the
measurements. This redundancy has a major ad-
vantage since the system runs completely stable and
autonomous from the actual building monitoring
server.

Due to performance aspects the lightweight data-
base Apache Derby 2014 is used. It is written in JA-
VA, which enables direct integration into the gate-
way software. Comparable databases are written in C
native code.

Furthermore, the Derby database is used in Em-
bedded Mode, which means that it is executed with-
in the gateways process, but in a separate thread, as
shown in Figure 2 (5). This reduces the overhead
that would elsewise occur, since the process sched-
uler gets relieved.

The database itself creates its DBMS and storage
within the application folder during the first execu-
tion. Every received packet is stored in the database
directly after successful processing. The data is then
ready to be sent to the building monitoring system.

The database is designed with a fixed table row
count. This means that when the predefined maxi-
mum measurements are reached, the oldest ones are
removed. The removal of the old data is handled by
a separate cleaner thread, which checks periodically
whether the cache is full. Both, the maximum row
count and the interval of the cleaner check can be
configured in the gateways configuration file.

According to tests, 10.000.000 measurements
have a size of about 10MB in the database. Still no
performance issues were noticeable, except for the
cleaner job that takes a few seconds more to finish,
compared to 10.000 values.

The entire ERP-packet is stored with a reception
timestamp. When the data is requested by the BMS
we process it again to generate a new interpretation
of the previous received bytes. This has the ad-
vantage that the data uses always the newest settings
for the interpretation of the bytes. This allows latter
adaptions of the XML files with the definition of the
EEP, or the change of the configured EEP for the
sensor on the server.

According to our tests, the reprocessing of 10.000
packets takes about 1.5s. A usual request is normally
for about 10-50 packets, and since real time re-
quirements are satisfied, the advantages outweigh
the disadvantages. Nevertheless during the tests we
noticed that the OpenJDK-JVM was processing sig-
nificantly slower, while the Oracle-JVM was around
seven times faster. To access the stored data from
the connector, the Callback Interface can be used.

3.3 Callback Interface

To detach from the BMS specific implementation,
the gateway and the actual connection to the BMS is
separated. Since the connector layer and the gateway
layer need to communicate, the Callback Interface is
designed, as shown in Figure 2 (2). The interface
provides different methods for the interaction with
the gateway layer. This design decision opens up the
opportunity to use the gateway layer with other BMS
than MOST. The interface only needs to be imple-
mented in a connector to the server, and it can access
the methods, and hence the gateway.

The Callback Interface defines the reading of the
measurements, and the mapping of the sender id to
the required EEP, which has to be implemented in
the connector layer, since it is BMS specific.

3.4 Connector Layer

The connector layer connects the gateway with the
BMS, as shown in Figure 2 (3) and (4), via VPN. It
has to implement the business logic required for
forwarding the interpreted data of the sensors to the
BMS server. Furthermore, it also needs to set the
sender mapping for the gateway layer. Each data
point in the BMS gets an assignment of a specific
EEP, and a specific part of it (e.g. occupancy-
brightness sensor: get brightness). Those values need
to be handed over from the connector to the gateway
layer. Sensors whose data is not handed over and
have thus no sender ID to EEP mapping, cannot be
processed.

3.5 Building Monitoring Software

This approach uses use the BMS MOST because of
the following reasons:
 All components are open-source, and coded in

JAVA, so we can make adaptions if necessary.
 It offers a wide range of different connectors for

interacting with the BMS, starting with classic
JDBC connectors to RMI connectors.

 It has a descriptive and vivid web view of the
measurements. There is also the possibility to
display the data within a 3D building model.

4 TEST SETUP

To verify the implementation two independent test
series are used.

4.1 Test Bed

This test takes place in the test bed of the Depart-
ment of Building Physics and Building Ecology, Vi-
enna University of Technology. Several different
sensor types are used, including window and door

contacts, temperature, CO2, illumination, and hu-
midity sensors.

During the test period of four and a half months
there was only one system failure that caused the
gateway to stop processing data. This was traced
back to an EnOcean USB300 error caused, perhaps,
by power fluctuations. After a reboot of the system,
including the removal of the power supply, the
EnOcean USB300 started working again. In total the
gateway transmitted over 25.000 measurements from
twenty different data points.

Furthermore, we noticed that dark rooms are not
optimal for the mostly solar energy powered sensors.
We measured that at least 14-35 lx on a regular basis
are necessary for most solar powered sensors to
work properly. This is not a real problem for most
typical architectural spaces. It could be a problem,
however, in basements or rooms with very little
light. In such cases, batteries or a power cables
would be required.

4.2 BPI Office

Unlike our test from the test bed, this test was exe-
cuted in a real world office, which was already
equipped with numerous EnOcean sensors, and runs
proprietary OPC Bus software for forwarding data to
the BMS. This has the advantage that we have a ref-
erence system we can compare the measurements
with.

Within one month the gateway forwarded over
120.000 measurements from about 250 data points to
the BMS, without any incident so far. We noticed
though that the received packets occasionally differ
from each other, meaning that one system receives a
packet that the other does not: Since radio transmis-
sion is used, packets can get lost or collide with each
other. EnOcean itself gives a transmission reliability
of 99.99% with hundred senders sending once per
minute. This problem though is negligible since we
are dealing with periodic measurements, and the
packet loss happens infrequently.

5 CONCLUSION AND FUTURE OUTLOOK

Notwithstanding that the current implementation is
optimized for the EnOcean sensor technology, it is
proposed to add multiple other solutions as well.
Furthermore, it is planned to add bidirectional com-
munication and thereby enable the BMS to control
device actuators.

The combination of MOST, the gateway on the
Raspberry Pi, and the EnOcean sensor technology is
working fine for reading purposes. At this point of
time, the implementation of the Callback Interface
allows only reading access of the sensors, although
the gateway software could also send data to devic-
es.

Currently, the gateway implementation does not
support the EnOcean Telegram Type VLD, and
hence SmartAcks. Nevertheless this only concerns
very few sensor types.
Another drawback is that the sensors have to be reg-
istered beforehand in the BMS to be interpreted, be-
cause the received packet data cannot be interpreted
without the knowledge of the type.

We can conclude that the proposed solution is
economical and easy-to-use, even though there are
some initial problems. By enabling a “plug-and-
play” setup and communication to a BMS via Inter-
net based technologies (e.g. local Ethernet network,
mobile telecommunication technologies – UMTS,
etc.), a scalable network of gateways could be set up,
thus paving the way for future large-scale (e.g. urban
monitoring) applications. The developed source code
is integrated in the MOST module most-connector
and available at MOST 2014.

6 ACKNOWLEDGEMENT

The research presented in this paper is supported by
funds from the "Klima- und Energiefonds" within
the program "Neue Energien 2020".

7 REFERENCES

Alexander P., Zach R. FH Technikum Wien 2013.

Raspberry PI als Universal Gateway

Vienna, Austria

Anders A., EnOcean GmbH 2011

EnOcean Technology – Energy Harvesting Wireless (PDF)

July 2011
Apache Derby 2014. Relational database implemented entirely

in Java. http://db.apache.org/derby/
December 2013

EnOcean 2014. Fieldbus network optimized for low power use.
 http://www.enocean.com
EnOcean Alliance 2013. EnOcean Equipment Profiles V2.6

December 2013
MOST 2014. Open-source Build Monitoring Toolkit.
 http://most.bpi.tuwien.ac.at
Raspberry Pi 2014. Low Cost Embedded System running Linux

OS. http://www.raspberrypi.org
SimpleXML 2014. Java based XML serializer, March 2014,

http://simple.sourceforge.net/
Zach R., Glawischnig S., Appel R., Weber J., Mahdavi A.

2012a. Building data visualization using the open-source
MOST framework and the Google Web Toolkit. 25 – 27
July, Reykjavik, Island

Zach R., Schuss M., Bräuer R. and Mahdavi A. 2012b.
Improving building monitoring using a data preprocessing
storage engine based on MySQL. 25 – 27 July, Island

Zach R. 2012. An open-source, vendor and technology
independent toolkit for building monitoring, data
preprocessing, and visualization. Dissertation, Department
of Building Physics and Building Ecology, 11.09.2012.

